Semi-Supervised Classification with Universum
نویسندگان
چکیده
The Universum data, defined as a collection of ”nonexamples” that do not belong to any class of interest, have been shown to encode some prior knowledge by representing meaningful concepts in the same domain as the problem at hand. In this paper, we address a novel semi-supervised classification problem, called semi-supervised Universum, that can simultaneously utilize the labeled data, unlabeled data and the Universum data to improve the classification performance. We propose a graph based method to make use of the Universum data to help depict the prior information for possible classifiers. Like conventional graph based semi-supervised methods, the graph regularization is also utilized to favor the consistency between the labels. Furthermore, since the proposed method is a graph based one, it can be easily extended to the multiclass case. The empirical experiments on the USPS and MNIST datasets are presented to show that the proposed method can obtain superior performances over conventional supervised and semi-supervised methods.
منابع مشابه
Selecting Informative Universum Sample for Semi-Supervised Learning
The Universum sample, which is defined as the sample that doesn’t belong to any of the classes the learning task concerns, has been proved to be helpful in both supervised and semi-supervised settings. The former works treat the Universum samples equally. Our research found that not all the Universum samples are helpful, and we propose a method to pick the informative ones, i.e., inbetween Univ...
متن کاملLeast Squares Universum Tsvm
Supervised learning problem with Universum data is a new research subject in machine learning. Universum data, which are not belonging to any class of the classification problem of interest, has been proved very helpful in learning. For data classification with Universum data, a novel quick classifier is proposed in this paper and named as least squares Universum twin support vector machine (LS...
متن کاملTwin support vector machine with Universum data
The Universum, which is defined as the sample not belonging to either class of the classification problem of interest, has been proved to be helpful in supervised learning. In this work, we designed a new Twin Support Vector Machine with Universum (called U-TSVM), which can utilize Universum data to improve the classification performance of TSVM. Unlike U-SVM, in U-TSVM, Universum data are loca...
متن کاملSemi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk
This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...
متن کاملUniversum Prescription: Regularization Using Unlabeled Data
This paper shows that simply prescribing “none of the above” labels to unlabeled data has a beneficial regularization effect to supervised learning. We call it universum prescription by the fact that the prescribed labels cannot be one of the supervised labels. In spite of its simplicity, universum prescription obtained competitive results in training deep convolutional networks for CIFAR-10, C...
متن کامل